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Introduction

The origins of Information Theory and Coding Theory J

C. Shannon, A Mathematical Theory of Communication. The Bell System
Technical Journal, 27 (1948) 379-423 July and 623-656 October. J

Error-Correcting Codes (Cdédigos Correctores de Errores) J

A alphabet - non empty set.
A code C is a proper subset of A", where n is the length of the code.

(a0, a1,..-,an—1) € C is a word of the code.

Hamming distance

u,veC dylu,v)y={i:u#v,i=0,...,n—1}
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Introduction

Let F be a field and G be a group (finite or infinite). The group algebra
FG is the set of formal sums

FG = Z ag g/ ag € I, finite sums
geG

Zagg + Zbgg = Z(ag+bg)g

g€G geaG gceG
Zagg . (thh> = Z (ag bn) gh
geG heG g,heG
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Introduction

Let Fq be a finite field with g elements.

A linear cyclic code is a linear code C C Fg such that, for each word
(ap, a1,-.-,an—1) in C, the word (a,_1, a0, a1,--.,an—2) is also in C.

v

F
& and
<x"—1>

the cyclic shift is equivalent to multiplication by the class of x in R,,.

Linear cyclic codes are ideals in the quotient ring R, =

Let G =< a > be a finite cyclic group of order n generated by a.
A linear cyclic code is also a proper ideal of the group algebra F,G.

The minimal cyclic codes are the ones generated by the primitive idem-
potents of F,G.
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Introduction

n o Folx o
CcFy = R=—2 = FG6=F,<a>
cyclic
{ x| al
shift
CcFy = R=—2b % FG6=F,<a> |
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Abelian Group Codes

Let G be a finite abelian group and [, be a finite field with g elements.

Definition (Berman (1967) and MacWilliams (1970))
An abelian code is a proper ideal of the group algebra F,G.

The minimal abelian codes are the ones generated by the primitive idem-
potents of F,G.

Definition (Miller (1979))

Two abelian codes Z; and Z, are G-equivalent if there exists an
automorphism 6 of G whose linear extension to FqG maps Z; on Zo.
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Abelian Group Codes

OBJECTIVES:
1) Determine G-equivalence of minimal ideals (codes) in semisimple abe-

lian group algebras.
2) Prove that the G-equivalence classes of minimal codes depend on the

structure of the lattice of the subgroups of G.

C. Polcino Milies marines

Marinés Guerreiro



Abelian Group Codes

OBJECTIVES:

1) Determine G-equivalence of minimal ideals (codes) in semisimple abe-
lian group algebras.

2) Prove that the G-equivalence classes of minimal codes depend on the
structure of the lattice of the subgroups of G.

HOW TO DO IT?
Establish a correspondence between the G-equivalence classes of minimal
abelian ideals in FG and certain classes of isomorphism of subgroups of
the abelian group G.
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Subgroups and Idempotents

Definition
Let G be a group. A subgroup H of G is said a co-cyclic subgroup if
the quotient G/H # 1 is a cyclic group.

We use the notation

Scc(G) = {H | H is a co-cyclic subgroup of G}.

We shall repeatedly use the following rather obvious fact.

Let G be a finite abelian p-group and H < G. Then G/H is a cyclic
group if and only if there exists a unique subgroup L such that
H<L<Gand|[L:H]=np.
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Subgroups and Idempotents

Let G be an abelian p-group and F be a finite field whose characteristic
does not divide the order of G.

For a subgroup H of G, denote
A=—2%h
Al e

—

and, for an element x € G, set X = (x).
For each co-cyclic subgroup H of G, we define the idempotent
ey = ﬁ — :‘/’/\*

of FG, where H* is the unique subgroup of G containing H such that
|H*/H| = p, since G/H is a cyclic p-group.
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Subgroups and Idempotents

Consider the set
{GYU{ey = H — Hi|H € Sc(G)}. (1)

For a rational abelian group algebra QG, the set above is the set of primi-
tive central idempotents [4, Theorem 1.4].

Theorem

[FM, Lemma 5] Let p be a prime number and G a finite abelian group
of exponent p" and F a finite field such that p fq. Then (1) is a set of
pairwise orthogonal idempotents of F,G whose sum is equal to 1.

Theorem

[FM, Theorem 4.1] Under the hypotheses above, the set (1) is the set of
primitive idempotents of FqG if and only if o(§) = ¢(p") in U(Zy),
where ¢ denotes Euler ’s totient function.

|
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Subgroups and Idempotents

For a finite abelian group G, write G = Gp, X - -+ X Gp,, where G,
denotes the p;-Sylow subgroup of G, for the distinct positive prime
numbers py, ..., p:.

Let G = Gy, X --- X Gp, be a finite abelian group and H € S..(G). Write
H = H,, x -+ x Hp,, where H,, is the p;-Sylow subgroup of H. Then
each subgroup H,, is co-cyclic in Gp;, 1 < i < t.

Demonstracio.

For H € S..(G), the quotient G/H = G, /Hp, X --- x Gp,/Hp, is cyclic,
hence each factor G,,/H,, must be cyclic. Therefore, Hy, € Scc(Gp,),
1<i<t [
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Subgroups and Idempotents

For each H € S..(G), define an idempotent ey € FG as follows. For
each 1 < j < t, either Hp, = Gp, or there exists a unique subgroup H}_ﬁi

such that [H} : Hp,] = pi. Thus, let e, = é\p/ or eq, = I-/I;i — HE,
respectively, and define
€H = eHP1 eHPz o eHPr : (2)

For any other K € Scc(G), with K # H, we have K, # Hp,, for some
1 <i<t, hence €H,, €K, = 0 and so eyex = 0. Thus:

Proposition

Let G be a finite abelian group and T a field such that char(F) f|G].
Then
B={en|H e S.(G)}

is a set of orthogonal idempotents of FG. For QG, these idempotents are
primitive while for finite fields this is usually not true.

v
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Subgroups, Idempotents and Automorphisms

G-equivalence of ideals +—— action of Aut(G) on the lattice of the
subgroups of G —— action of Aut(FG) on the idempotents of B J

Note: same notation for ) € Aut(G) and its linear extension to FG.

Lemma

Let G be a finite abelian group, H € S..(G) and ey its corresponding
idempotent defined as in (2). Then, for any 1) € Aut(G), we have

w(eH) = e,j,(,.,).

| A\

Lemma

Let G be a finite abelian group and T a field such that char(F) f|G].
Then, in the group algebra FG, we have:

1=G+ Y en 3)

HES(G)

\
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Subgroups, Idempotents and Automorphisms

What about primitive idempotents and corresponding subgroups?

Lemma

Let G be a finite abelian group and I a field such that char(F) } |G]|.
For each primitive idempotent e € FG, there exists a unique H € Sc-(G)
such that e - ey = e and e - ex = 0, for any other K € S..(G).

|

Demonstracao.

By Lemma 7, 1 = G + Z ey. Multiplying by e, we have:
HES(G)

e—e @+ Z eH :e~@—|— Z €-éey. (4)

HeS(G) HeS(G)

As ey - ex =0, for H # K € S.c(G), the right hand side of (4) is a sum
of orthogonal idempotents. Therefore, as e is a primitive idempotent,
only one summand is non-zero. O
e ————————————————————
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Subgroups, Idempotents and Automorphisms

Set P(FG)={e € FG]|e is a primitive idempotent in FG}. Under
the same hypotheses of Lemma 8, the following map is well-defined:
¢ : P(FG) —  S(G) 5)
e —  ®(e) = He,
where H, is the unique co-cyclic subgroup of G such that e- ey, = e.
Theorem

Let G be a finite abelian group, ¥ a field such that char(F) [ |G| and

H € S..(G). Then ey is the sum of all primitive idempotents e € P(FG)
such that ®(e) = H.

Write 1 = Z e. Then
ecP(FG)
ey = Z eye = Z eqye + Z eqe = Z e.
ecP(FG) ®(e)#H ®(e)= d(e)=H
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G-isomorphisms and G-equivalence

Definition

Two subgroups H and K of a group G are G-isomorphic if there exists an
automorphism ¢ € Aut(G) such that p(H) = K.
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G-isomorphisms and G-equivalence

Definition

Two subgroups H and K of a group G are G-isomorphic if there exists an
automorphism ¢ € Aut(G) such that p(H) = K.

Isomorphic subgroups are not necessarily G-isomorphic.
Example: For p prime, if G = (a) x (b) with o(a) = p? and o(b) = p, then
(aP) and (b) are isomorphic but not G-isomorphic, since (b) is contained
properly only in (aP) x (b) and (aP) is contained in (a) and in (a'b), for
1<i<p-1.

v
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G-isomorphisms and G-equivalence

Definition

Two subgroups H and K of a group G are G-isomorphic if there exists an
automorphism ¢ € Aut(G) such that p(H) = K.

<

Isomorphic subgroups are not necessarily G-isomorphic.
Example: For p prime, if G = (a) x (b) with o(a) = p? and o(b) = p, then
(aP) and (b) are isomorphic but not G-isomorphic, since (b) is contained
properly only in (aP) x (b) and (aP) is contained in (a) and in (a'b), for
1<i<p-1.

|

Proposition

Let G be a finite abelian group and T a field such that char(F) f|G|. If
e, e1 € P(FG) are such that 1)(e) = ey, for some automorphism
1 € Aut(G) linearly extended to FG, then
QZJ(H&) = H’l/)(e) = He17
i.e., He and H,, are G-isomorphic.
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G-isomorphisms and G-equivalence

The converse of the Proposition 5 is also true. For this, set

LAut(G) = {¢y € Aut(G) |v(H) = H, for all H < G}.

Lemma

Let G be a finite abelian group, g € G and r € N with ged(r, o(g)) = 1.
Then there exists 1 € LAut(G) such that ¢(g) = g"

Lemma

| A\

Let G be a finite abelian group and ¢ € Aut(G). Then i € LAut(G) if
and only if there exists r € N such that ged(r, |G|) =1 and ¥(g) = g",
for allg € G.
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G-isomorphisms and G-equivalence

Lemma

Let G be a finite abelian group and I a field such that char(F) }|G]|.
Then B = {en|H € Scc(G)} is both a basis for the algebra

A={a eFG|¢Y(a)=ca, forall € LAut(G)}

and the set of primitive idempotents of A.

Proposition

| A\

Let G be a finite abelian group and I a field such that char(F) J|G|. If
e, & € P(FG) and He, = H.,, then there exists an automorphism
1 € LAut(G) whose linear extension to FG maps e to e;.

Marinés Guerreiro C. Polcino Milies marines



G-isomorphisms and G-equivalence

Proposition

Let G be a finite abelian group and F a field such that char(F) /|G]|.

If e1, &2 € P(FG) are such that 1)(He,) = He,, for some ¢ € Aut(G),
then there exists an automorphism 6 € Aut(G) whose linear extension to
FG maps e; and e, i.e., the ideals of FG generated by e; and e, are
G-equivalent.
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G-isomorphisms and G-equivalence

We found the following statements in the paper:

R.L. MILLER, Minimal codes in abelian group algebras, Journal of
Combinatorial Theory, Series A, 26 (1979) 166-178.

Theorem A [M, Theorem 3.6] "If G is a finite abelian group with exponent
n and 7(n) is the number of divisors of n, then there exist precisely T(n)
non G-equivalent minimal codes in FoG .
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G-isomorphisms and G-equivalence

We found the following statements in the paper:

R.L. MILLER, Minimal codes in abelian group algebras, Journal of
Combinatorial Theory, Series A, 26 (1979) 166-178.

Theorem A [M, Theorem 3.6] "If G is a finite abelian group with exponent
n and 7(n) is the number of divisors of n, then there exist precisely T(n)
non G-equivalent minimal codes in FoG .

Theorem B [M, Theorem 3.9] " Two minimal abelian codes with the same
weight distribution are G-equivalent”. J

Marinés Guerreiro C. Polcino Milies marines




G-isomorphisms and G-equivalence

We found the following statements in the paper:

R.L. MILLER, Minimal codes in abelian group algebras, Journal of
Combinatorial Theory, Series A, 26 (1979) 166-178.

Theorem A [M, Theorem 3.6] "If G is a finite abelian group with exponent
n and 7(n) is the number of divisors of n, then there exist precisely T(n)
non G-equivalent minimal codes in FoG .

Theorem B [M, Theorem 3.9] " Two minimal abelian codes with the same
weight distribution are G-equivalent”. J

(Un)fortunately, both statements are not correct!!!! J
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G-isomorphisms and G-equivalence

In a direct product of two (abelian) groups G; and G,

the product of a primitive idempotent of F, Gy with

a primitive idempotent of IF; G, may not be primitive

n ]FQ(Gl X GQ)

In [3] we exhibited counterexamples to both Theorems A and B.
However, Theorem A does hold under certain hipotheses, as we show in
the sequel.
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G-isomorphisms and G-equivalence

If H is a cyclic subgroup of order p* in a group G = Cyr X -+ X Cpr, with
—_———

m
s < r, then there exists a cyclic subgroup of G, of order p", containing H.

Theorem

Let m and r be positive integers. If G = Cyr X --- X Cpr is a finite
—_—

m
abelian p-group, then any co-cyclic subgroup of G contains a subgroup
isomorphic to Cyr X --- x C,r. Hence the subgroups of G isomorphic to

—_————
(m—1)
Cpr X --- x Cpyr are precisely the minimal co-cyclic subgroups of G.
| —

(m—1)
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G-isomorphisms and G-equivalence

Proposition

Let m and r be positive integers. If G = Cpr X --- X Cpyr is a finite
~—_———

abelian p-group and F is a field with char(IF) # p, then a primitive

idempotent of FG is of the form K - e, where K is a subgroup of G

isomorphic to Cpr X - -+ x Cpr and ey, is a primitive idempotent of F(h),
—_——

(m=1)
where h € G is such that G = (h) x K and (h) = C,.
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G-isomorphisms and G-equivalence

Corollary

Let m and r be positive integers, G = Cyr X --- x Cyr a finite abelian
| S —

m
p-group and Fy a finite field with q elements such that o(q) = ¢(p") in
U(Z,). Then the minimal abelian codes (ideals) in FyG are as follows:

Primitive Idempotent | Dimension | Minimum Weight
G 1 prm
K(hp _ h) p—1 2pr(m—1)+(r—1)
R(hpi _ hpi—l) pi—l(p _ 1) 2pr(m—1)—(r—i)
K(1—h) P p—1) 2p(m-1)

where h is as in Proposition 9. Consequently, the number of non
G-equivalent minimal abelian codes (ideals) is r +1 = 7(p").
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G-isomorphisms and G-equivalence

Corollary

Let n > 2 be an integer, G = C, x --- x C, an abelian group and F, a
—_——

finite field such that ged(q, n) = 1. Then the primitive idempotents of
F,G are of the form K - es, where K is a subgroup of G isomorphic to
Ch X -+-x Cp,, h € G issuch that G = K x (h) and ey, is a primitive
[ —

(m—1)
idempotent of Fq(h).

Let G be a finite abelian group of exponent n and F a finite field such
that char(F) f|G|. Then the number of non G-equivalent minimal
abelian codes is precisely T(n) if and only if G is a direct product of
cyclic groups isomorphic to one another.

Marinés Guerreiro C. Polcino Milies marines



E
[
[

S.D. BERMAN, Semisimple cyclic and abelian codes, II, Kybernetika
3 (1967) 21-30.

O. BrocHE, A. DEL Rfo, Wedderburn decomposition of finite
group algebras, Finite Fields and their Applications 13 (2007) 71-79.

[.F. BLake, R.C. MULLIN, The Mathematical Theory of Coding,
Academic Press, New York, 1975.

R. FERRAZ, M. GUERREIRO, C. POLCINO MILIES, Minimal
codes in binary abelian group algebras, Proceedings of ITW-IEEE
2011 (to appear).

R. FERRAZ, C. POLCINO MILIES, Idempotents in group algebras
and minimal abelian codes, Finite Fields and their Applications, 13,
(2007) 382-393.

E.G. GoopAIRE, E. JESPERS, C. PoLCcINO MILIES, Alternative
Loop Rings, North-Holland Mathematics Studies 184, Elsevier,
Amsterdam, 1996.

Marinés Guerreiro C. Polcino Milies marines



@ C.J. HiLLAR, D.L. RHEA, Automorphisms of finite abelian groups,
American Math. Monthly 114 n. 10 (2007) 917-923.

@ E. JESPERS, G. LEAL, A. PAQUES, Central idempotents in the
rational group algebra of a finite nilpotent group, Journal of Algebra
and its Applications, 2 No. 1 (2003) 57-62.

@ F.J. MacWilliams, Binary codes which are ideals in the group algebra
of an abelian group, Bell System Tech. Journal, 44, (1970)
087-1011.

@ R.L. MILLER, Minimal codes in abelian group algebras, Journal of
Combinatorial Theory, Series A, 26 (1979) 166-178.

@ A. OLvIERI, A. DEL Rio, J. J. SIMON, On monomial characters
and central idempotents of rational group algebras, Comm. Algebra
32 (4) (2004) 1531-1550.

@ C. Porcino MiLies, S.K. SEHGAL, An Introduction to Group
Rings, Kluwer Academic Publishers, Dordrecht; 2002.

Marinés Guerreiro C. Polcino Milies marines



	Introduction
	Abelian Group Codes
	Subgroups and Idempotents
	Subgroups, Idempotents and Automorphisms
	G-isomorphisms and G-equivalence
	To know more...

